• 首页期刊介绍编委会期刊订阅广告合作联系我们English
  • 选择皮肤:
杨文君,孙耀宁,杨延竹,凡辉,王国建.基于磨粒磨损机理的机械磨损状态监测[J].航空动力学报,2019,(6):1246~1252
基于磨粒磨损机理的机械磨损状态监测
Mechanical wear condition monitoring method based on abrasive particle wear mechanism
投稿时间:2018-11-20  
DOI:10.13224/j.cnki.jasp.2019.06.008
中文关键词:  磨粒  特征分析  机械磨损  量子粒子群优化  状态检测
英文关键词:abrasive particle  feature analysis  mechanical wear  quantum particle swarm optimization  condition monitoring
基金项目:国家自然科学基金(51465055)
作者单位
杨文君 新疆大学 机械工程学院,乌鲁木齐 830047 
孙耀宁 新疆大学 机械工程学院,乌鲁木齐 830047 
杨延竹 东华大学 机械工程学院,上海 201620 
凡辉 东华大学 机械工程学院,上海 201620 
王国建 新疆大学 机械工程学院,乌鲁木齐 830047 
摘要点击次数: 512
全文下载次数: 819
中文摘要:
      针对机械设备磨损状态监测准确率较低的问题,基于不同磨损机理下磨粒具有不同的形状和纹理特征,提出了一种基于磨粒特征识别的机械磨损状态监测的数学模型。通过形状特征识别球状磨粒和切削磨粒,结合形状、纹理特征识别疲劳磨粒和严重滑动磨粒,基于提取的特征参数建立机械磨损状态监测的特征向量,通过量子粒子群优化(QPSO)的径向基函数神经网络模型,实现对机械磨损状态的监测和判别。实验结果表明:QPSO-RBF神经网络数学模型结构简单,比传统PSO-RBF神经网络模型的识别准确率高5%,可用于常见机械磨损状态的检测。
英文摘要:
      In order to solve the problem of low accuracy in monitoring the wear state of mechanical equipment, a mathematical model of monitoring the wear state based on the recognition of abrasive particle features was proposed based on different wear mechanisms with different shapes and textures. By identifying ball wear particles and cutting wear particles through shape feature, the shape and the texture features were combined to recognize fatigue wear particles and severe sliding wear particles. The feature vector of mechanical wear state monitoring was established based on the extracted feature parameters. Through the radical basis function neural network model by quantum particle swarm optimization (QPSO), the recognition and monitoring of mechanical wear state were realized. The experimental results show that the QPSO-RBF neural network model is simple in structure and 5% higher in recognition accuracy than the traditional PSO-RBF neural network model. It can be used for common mechanical wear condition monitoring
查看全文  查看/发表评论  下载PDF阅读器
关闭
.